相比大家早早听说过了虚拟DOM的存在,Diff算法的运用是虚拟DOM具有高性能的一个重要原因。
虚拟DOM
Vue的虚拟DOM实质上就是生成一个AST(抽象语法树Abstract Syntax Tree)
我们可以用这一串代码来看看原生DOM有多复杂:
let div = document.createElement('div')
let str = ''
for (const key in div) {
str += key + ''
}
console.log(str)
解决方案就是 我们可以用 JS
的计算性能来换取操作 DOM
所消耗的性能,既然我们逃不掉操作 DOM
这道坎,但是我们可以尽可能少的操作 DOM
,这时候就是Diff算法发挥的时候了
Diff算法
Diff 算法,在 Vue 里面就是叫做 patch
,它的核心就是参考 Snabbdom,通过新旧虚拟 DOM 对比(即 patch 过程),找出最小变化的地方转为进行 DOM 操作
在 Vue1 里是没有 patch 的,每个依赖都有单独的 Watcher 负责更新,当项目规模变大的时候性能就跟不上了,所以在 Vue2 里为了提升性能,改为每个组件只有一个Watcher,那我们需要更新的时候,怎么才能精确找到组件里发生变化的位置呢?所以 patch 它来了
比如有上图这样的 DOM 结构,是怎么计算出变化?简单说就是
- 遍历老的虚拟 DOM
- 遍历新的虚拟 DOM
- 然后根据变化,比如上面的改变和新增,再重新排序
可是这样会有很大问题,假如有1000个节点,就需要计算 1000³ 次,也就是10亿次,这样是无法让人接受的,所以 Vue 或者 React 里使用 Diff 算法的时候都遵循深度优先,同层比较的策略做了一些优化,来计算出最小变化
Diff算法怎么优化?
1. 只比较同一层级,不跨级比较
如图,Diff 过程只会把同颜色框起来的同一层级的 DOM 进行比较,这样来简化比较次数,这是第一个方面
2. 比较标签名
如果同一层级的比较标签名不同,就直接移除老的虚拟 DOM 对应的节点,不继续按这个树状结构做深度比较,这是简化比较次数的第二个方面
3. 比较 key
如果标签名相同,key 也相同,就会认为是相同节点,也不继续按这个树状结构做深度比较,比如我们写 v-for 的时候会比较 key,不写 key 就会报错,这也就是因为 Diff 算法需要比较 key
面试中有一道特别常见的题,就是让你说一下 key 的作用,实际上考查的就是大家对虚拟 DOM 和 patch 细节的掌握程度,能够反应出我们面试者的理解层次,所以这里扩展一下 key
Key的作用
在Vue源码的renderer.ts的1600行左右:
const patchUnkeyedChildren = (
c1: VNode[],
c2: VNodeArrayChildren,
container: RendererElement,
anchor: RendererNode | null,
parentComponent: ComponentInternalInstance | null,
parentSuspense: SuspenseBoundary | null,
namespace: ElementNamespace,
slotScopeIds: string[] | null,
optimized: boolean,
) => {
c1 = c1 || EMPTY_ARR
c2 = c2 || EMPTY_ARR
const oldLength = c1.length
const newLength = c2.length
const commonLength = Math.min(oldLength, newLength)
let i
for (i = 0; i < commonLength; i++) {
const nextChild = (c2[i] = optimized
? cloneIfMounted(c2[i] as VNode)
: normalizeVNode(c2[i]))
patch(
c1[i],
nextChild,
container,
null,
parentComponent,
parentSuspense,
namespace,
slotScopeIds,
optimized,
)
}
if (oldLength > newLength) {
// remove old
unmountChildren(
c1,
parentComponent,
parentSuspense,
true,
false,
commonLength,
)
} else {
// mount new
mountChildren(
c2,
container,
anchor,
parentComponent,
parentSuspense,
namespace,
slotScopeIds,
optimized,
commonLength,
)
}
}
对于没有key的patch更新是这样的,也就是简单的去头去尾之后来更新
而对于有key的更新:
const patchKeyedChildren = (
c1: VNode[],
c2: VNodeArrayChildren,
container: RendererElement,
parentAnchor: RendererNode | null,
parentComponent: ComponentInternalInstance | null,
parentSuspense: SuspenseBoundary | null,
namespace: ElementNamespace,
slotScopeIds: string[] | null,
optimized: boolean,
) => {
let i = 0
const l2 = c2.length
let e1 = c1.length - 1 // prev ending index
let e2 = l2 - 1 // next ending index
// 1. sync from start
// (a b) c
// (a b) d e
while (i <= e1 && i <= e2) {
const n1 = c1[i]
const n2 = (c2[i] = optimized
? cloneIfMounted(c2[i] as VNode)
: normalizeVNode(c2[i]))
if (isSameVNodeType(n1, n2)) {
patch(
n1,
n2,
container,
null,
parentComponent,
parentSuspense,
namespace,
slotScopeIds,
optimized,
)
} else {
break
}
i++
}
// 2. sync from end
// a (b c)
// d e (b c)
while (i <= e1 && i <= e2) {
const n1 = c1[e1]
const n2 = (c2[e2] = optimized
? cloneIfMounted(c2[e2] as VNode)
: normalizeVNode(c2[e2]))
if (isSameVNodeType(n1, n2)) {
patch(
n1,
n2,
container,
null,
parentComponent,
parentSuspense,
namespace,
slotScopeIds,
optimized,
)
} else {
break
}
e1--
e2--
}
// 3. common sequence + mount
// (a b)
// (a b) c
// i = 2, e1 = 1, e2 = 2
// (a b)
// c (a b)
// i = 0, e1 = -1, e2 = 0
if (i > e1) {
if (i <= e2) {
const nextPos = e2 + 1
const anchor = nextPos < l2 ? (c2[nextPos] as VNode).el : parentAnchor
while (i <= e2) {
patch(
null,
(c2[i] = optimized
? cloneIfMounted(c2[i] as VNode)
: normalizeVNode(c2[i])),
container,
anchor,
parentComponent,
parentSuspense,
namespace,
slotScopeIds,
optimized,
)
i++
}
}
}
// 4. common sequence + unmount
// (a b) c
// (a b)
// i = 2, e1 = 2, e2 = 1
// a (b c)
// (b c)
// i = 0, e1 = 0, e2 = -1
else if (i > e2) {
while (i <= e1) {
unmount(c1[i], parentComponent, parentSuspense, true)
i++
}
}
// 5. unknown sequence
// [i ... e1 + 1]: a b [c d e] f g
// [i ... e2 + 1]: a b [e d c h] f g
// i = 2, e1 = 4, e2 = 5
else {
const s1 = i // prev starting index
const s2 = i // next starting index
// 5.1 build key:index map for newChildren
const keyToNewIndexMap: Map<PropertyKey, number> = new Map()
for (i = s2; i <= e2; i++) {
const nextChild = (c2[i] = optimized
? cloneIfMounted(c2[i] as VNode)
: normalizeVNode(c2[i]))
if (nextChild.key != null) {
if (__DEV__ && keyToNewIndexMap.has(nextChild.key)) {
warn(
`Duplicate keys found during update:`,
JSON.stringify(nextChild.key),
`Make sure keys are unique.`,
)
}
keyToNewIndexMap.set(nextChild.key, i)
}
}
// 5.2 loop through old children left to be patched and try to patch
// matching nodes & remove nodes that are no longer present
let j
let patched = 0
const toBePatched = e2 - s2 + 1
let moved = false
// used to track whether any node has moved
let maxNewIndexSoFar = 0
// works as Map<newIndex, oldIndex>
// Note that oldIndex is offset by +1
// and oldIndex = 0 is a special value indicating the new node has
// no corresponding old node.
// used for determining longest stable subsequence
const newIndexToOldIndexMap = new Array(toBePatched)
for (i = 0; i < toBePatched; i++) newIndexToOldIndexMap[i] = 0
for (i = s1; i <= e1; i++) {
const prevChild = c1[i]
if (patched >= toBePatched) {
// all new children have been patched so this can only be a removal
unmount(prevChild, parentComponent, parentSuspense, true)
continue
}
let newIndex
if (prevChild.key != null) {
newIndex = keyToNewIndexMap.get(prevChild.key)
} else {
// key-less node, try to locate a key-less node of the same type
for (j = s2; j <= e2; j++) {
if (
newIndexToOldIndexMap[j - s2] === 0 &&
isSameVNodeType(prevChild, c2[j] as VNode)
) {
newIndex = j
break
}
}
}
if (newIndex === undefined) {
unmount(prevChild, parentComponent, parentSuspense, true)
} else {
newIndexToOldIndexMap[newIndex - s2] = i + 1
if (newIndex >= maxNewIndexSoFar) {
maxNewIndexSoFar = newIndex
} else {
moved = true
}
patch(
prevChild,
c2[newIndex] as VNode,
container,
null,
parentComponent,
parentSuspense,
namespace,
slotScopeIds,
optimized,
)
patched++
}
}
// 5.3 move and mount
// generate longest stable subsequence only when nodes have moved
const increasingNewIndexSequence = moved
? getSequence(newIndexToOldIndexMap)
: EMPTY_ARR
j = increasingNewIndexSequence.length - 1
// looping backwards so that we can use last patched node as anchor
for (i = toBePatched - 1; i >= 0; i--) {
const nextIndex = s2 + i
const nextChild = c2[nextIndex] as VNode
const anchor =
nextIndex + 1 < l2 ? (c2[nextIndex + 1] as VNode).el : parentAnchor
if (newIndexToOldIndexMap[i] === 0) {
// mount new
patch(
null,
nextChild,
container,
anchor,
parentComponent,
parentSuspense,
namespace,
slotScopeIds,
optimized,
)
} else if (moved) {
// move if:
// There is no stable subsequence (e.g. a reverse)
// OR current node is not among the stable sequence
if (j < 0 || i !== increasingNewIndexSequence[j]) {
move(nextChild, container, anchor, MoveType.REORDER)
} else {
j--
}
}
}
}
}
首先经过去头去尾留下中间部分,然后找出最长递增子序列,在此序列基础上进行增删改来更新,节省了大量性能
鱿鱼须在这里也留下了他的源码:
// https://en.wikipedia.org/wiki/Longest_increasing_subsequence
function getSequence(arr: number[]): number[] {
const p = arr.slice()
const result = [0]
let i, j, u, v, c
const len = arr.length
for (i = 0; i < len; i++) {
const arrI = arr[i]
if (arrI !== 0) {
j = result[result.length - 1]
if (arr[j] < arrI) {
p[i] = j
result.push(i)
continue
}
u = 0
v = result.length - 1
while (u < v) {
c = (u + v) >> 1
if (arr[result[c]] < arrI) {
u = c + 1
} else {
v = c
}
}
if (arrI < arr[result[u]]) {
if (u > 0) {
p[i] = result[u - 1]
}
result[u] = i
}
}
}
u = result.length
v = result[u - 1]
while (u-- > 0) {
result[u] = v
v = p[v]
}
return result
}
看到这里不禁惊叹,大佬就是大佬,我们平时刷的累死的leetcode题目,大佬信手拈来搞优化,真是隔行如隔山。